

Security Advisory 2023-041

Multiple Vulnerabilities in BIND 9 DNS System

June 26, 2023 - v1.0

TLP:CLEAR

History:

• 26/06/2023 — v1.0 – Initial publication

Summary

On June 22, The Internet Systems Consortium (ISC) has released security advisories that address high severity vulnerabilities affecting multiple versions of the ISC's Berkeley Internet Name Domain (BIND) 9. A remote attacker could exploit these vulnerabilities to potentially cause denial-of-service conditions [1].

Technical Details

CVE-2023-2828 (CVSSv3 base score of 7.5)

Every *named* instance configured to run as a recursive resolver maintains a cache database holding the responses to the queries it has recently sent to authoritative servers. The size limit for that cache database can be configured using the *max-cache-size* statement in the configuration file; it defaults to 90% of the total amount of memory available on the host. When the size of the cache reaches 7/8 of the configured limit, a cache-cleaning algorithm starts to remove expired and/or least-recently used RRsets from the cache, to keep memory use below the configured limit.

It has been discovered that the effectiveness of the cache-cleaning algorithm used in *named* can be severely diminished by querying the resolver for specific RRsets in a certain order, effectively allowing the configured *max-cache-size* limit to be significantly exceeded. By exploiting this flaw, an attacker can cause the amount of memory used by a *named* resolver to go well beyond the configured *max-cache-size* limit [2].

CVE-2023-2829 (CVSSv3 base score of 7.5)

A *named* instance configured to run as a DNSSEC-validating recursive resolver with the Aggressive Use of DNSSEC-Validated Cache (RFC 8198) option (*synth-from-dnssec*) enabled can be remotely terminated using a zone with a malformed NSEC record. By sending specific queries to the resolver, an attacker can cause named to terminate unexpectedly [3].

CVE-2023-2911 (CVSSv3 base score of 7.5)

If the *recursive-clients* quota is reached on a BIND 9 resolver configured with both *stale-answer-enable yes*; and *stale-answer-client-timeout 0*;, a sequence of serve-stale-related lookups could cause *named* to loop and terminate unexpectedly due to a stack overflow. By sending specific queries to the resolver, an attacker can cause *named* to terminate unexpectedly [4].

ISC is not aware of any active exploits related to the aforementioned vulnerabilities [2,3,4].

Affected Products

CVE-2023-2828

BIND [2]:

- 9.11.0 -> 9.16.41
- 9.18.0 -> 9.18.15
- 9.19.0 -> 9.19.13

BIND Supported Preview Edition (a special feature preview branch of BIND provided to eligible ISC support customers) [2]:

- 9.11.3-S1 -> 9.16.41-S1
- 9.18.11-S1 -> 9.18.15-S1

Versions prior to 9.11.37 & 9.11.37-S1 were not assessed, but we believe that all versions of BIND 9.11 are vulnerable. Some even older major branches may be vulnerable as well [2].

CVE-2023-2829

BIND Supported Preview Edition [3]:

- 9.16.8-S1 -> 9.16.41-S1
- 9.18.11-S1 -> 9.18.15-S1

CVE-2023-2911

BIND [4]:

- 9.16.33 -> 9.16.41
- 9.18.7 -> 9.18.15

BIND Supported Preview Edition [4]:

- 9.16.33-S1 -> 9.16.41-S1
- 9.18.11-S1 -> 9.18.15-S1

BIND 9.11-S versions that support the stale-answer-client-timeout option are not vulnerable[4].

Recommendations

CERT-EU highly recommends update the system to most closely related to your current version of BIND 9:

BIND [2,3,4]:

- 9.16.42
- 9.18.16
- 9.19.14

BIND Supported Preview Edition [2,3,4]:

- 9.16.42-S1
- 9.18.16-S1

Workarounds

- CVE-2023-2828 No workarounds known [2].
- CVE-2023-2829 Setting *synth-from-dnssec* to *no* prevents the problem [3].
- CVE-2023-2911 Setting *stale-answer-client-timeout* to *off* or to a non-zero value prevents the issue. Users of versions 9.18.10, 9.16.36, 9.16.36-S1 or older who are unable to upgrade should set *stale-answer-client-timeout* to *off*; using a non-zero value with these older versions leaves *named* vulnerable to CVE-2022-3924. Although it is possible to set the *recursive-clients* limit to a high number to reduce the likelihood of this scenario, this is not recommended; the limit on *recursive-clients* is important for preventing exhaustion of server resources. The limit cannot be disabled entirely [4].

References

- [1] https://www.cisa.gov/news-events/alerts/2023/06/22/isc-releases-security-advisories-multiple-versions-bind-9
- [2] https://kb.isc.org/v1/docs/cve-2023-2828
- [3] https://kb.isc.org/v1/docs/cve-2023-2829
- [4] https://kb.isc.org/v1/docs/cve-2023-2911